High-resolution modelling of health impacts and related external cost from air pollution using the integrated model system EVA

Jørgen Brandt, Mikael S. Andersen, Jakob Bønløkke, Jesper H. Christensen, Kaj M. Hansen, Ole Hertel, Steen S. Jensen, Matthias Ketzel, Ole-Kenneth Nielsen, Marlene S. Plejdrup, Torben Sigsgaard, and Camilla Geels Aarhus University Denmark

WHO report 25/3-2014

Health topics

Media centre

Data

Publications

Programmes

About WHO

Search

Public health, social and environmental determinants of health (PHE)

Public health, social and environmental determinants of health (PHE)

About us

Health topics

Publications

7 million deaths annually linked to air pollution

Countries

In new estimates released, WHO reports that in 2012 around 7 million people died - one in eight of total global deaths - as a result of air pollution exposure. This finding more than doubles previous estimates and confirms that air pollution is now the world's largest single environmental health risk. Reducing air pollution could save millions of lives.

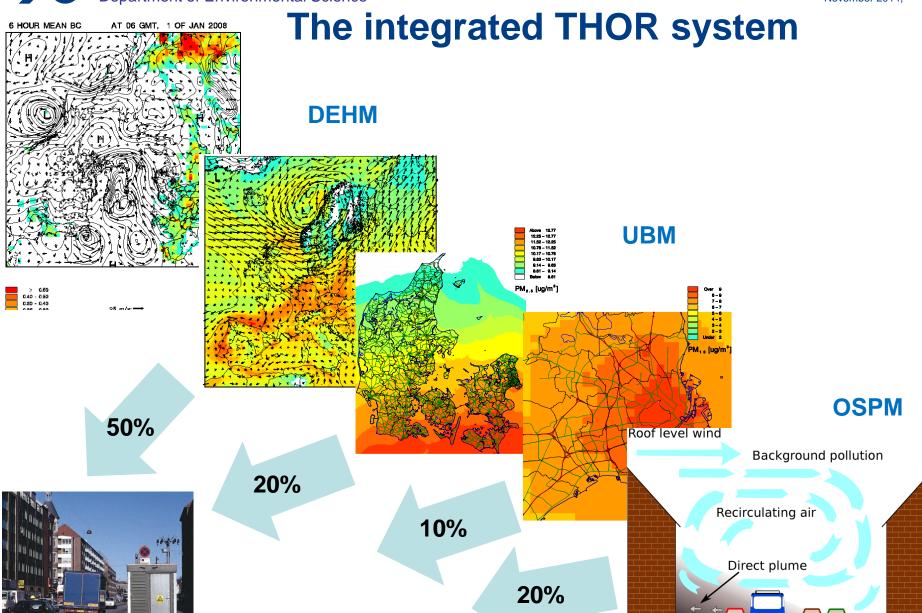
Read the news release on air pollution Read the feature story on air pollution

♣ FAQs on air pollution ¬ pdf, 169kb

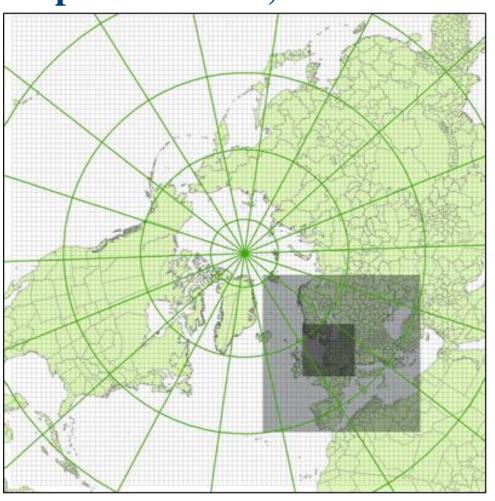
♣ Air pollution estimates pdf, 1.16Mb

3.7 million deaths

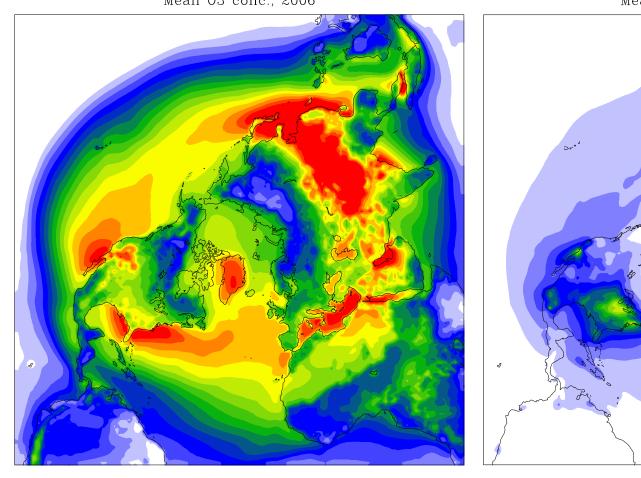
attributable to ambient air pollution

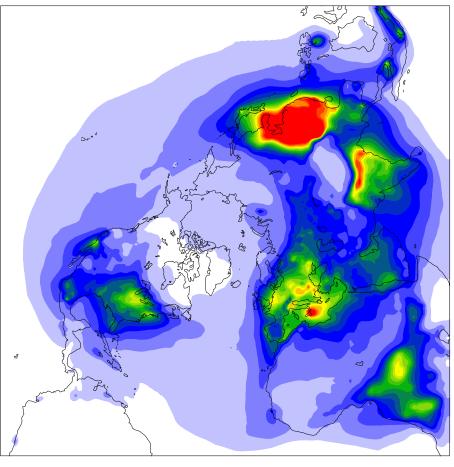

4.3 million deaths

attributable to household air pollution


caused by air pollution in 2012, covering

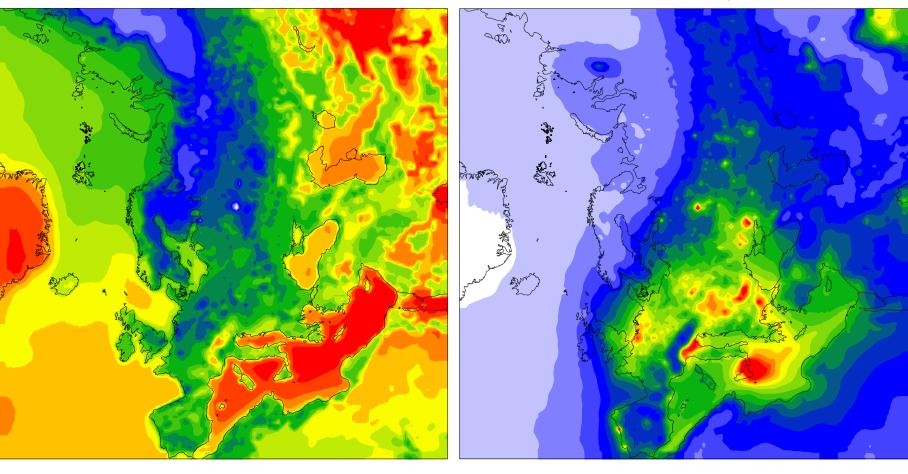
7 million deaths


- Long-range transport of air pollution in the Northern Hemisphere and/or Europe
- Species: photo-chemistry and particles (67 species), POPs,
 (PCBs, HCHs, PAHs and dioxins 15 species), mercury (7 species), pollen, CO₂, etc.
- > Two-way nesting capability
- > 150 / 50 / 16,67 / 5,56 km grid resolutions
- > 29 vertical levels up to ~16 km
- Model run and validation for a period of 25 years (1989 to 2013)
- > Emission tagging capability
- > Can be run on climate data
- \rightarrow DA OI, 3D-var or EKF



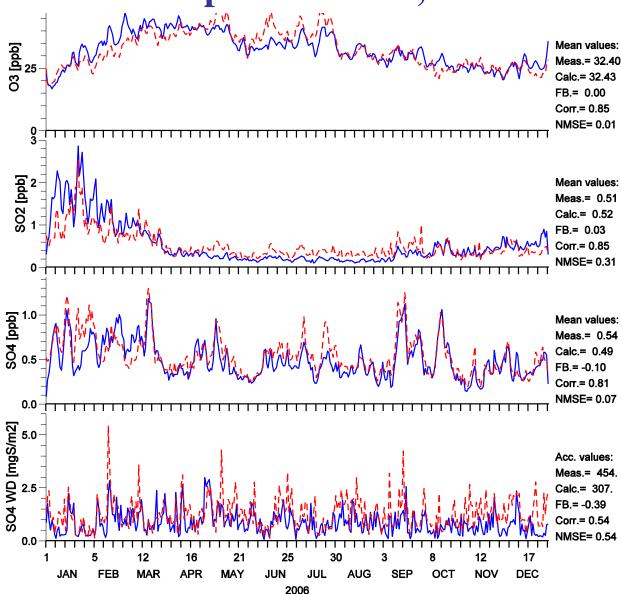
Mean 03 conc., 2006

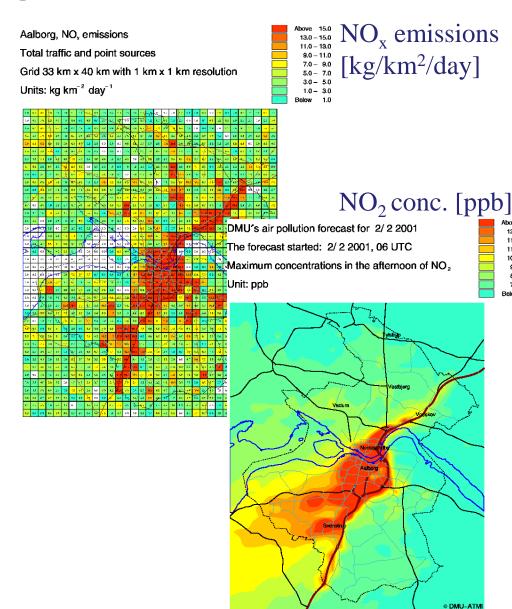
Mean PM2.5 conc., 2006



Mean 03 conc., 2006

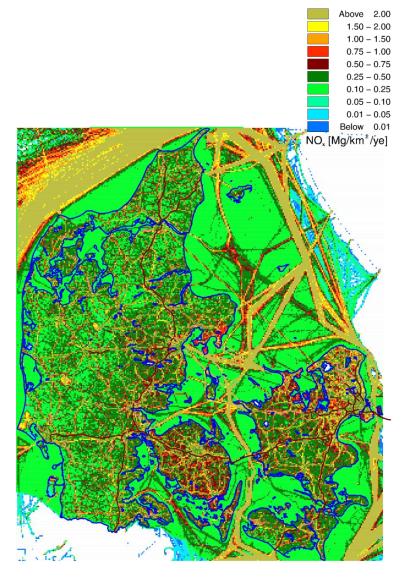
Mean PM2.5 conc., 2006

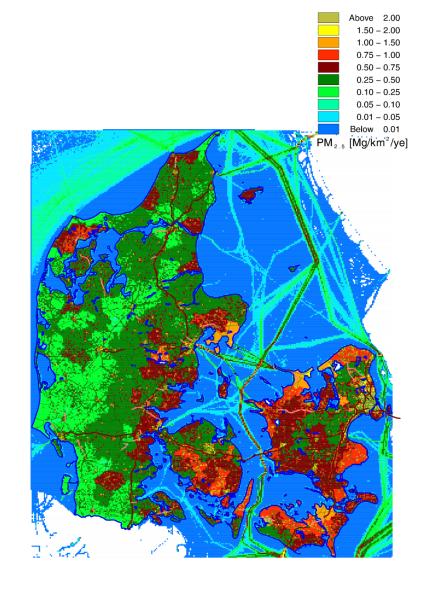


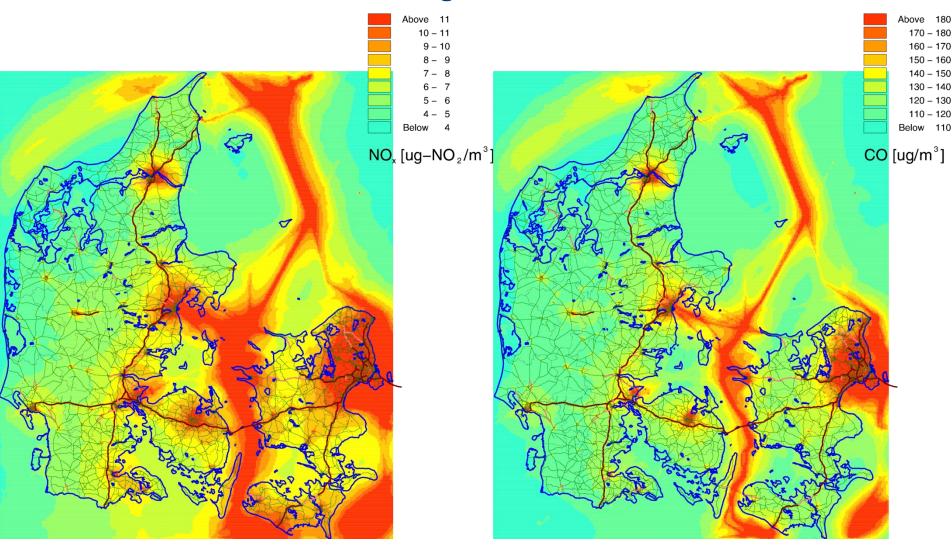

SO₂

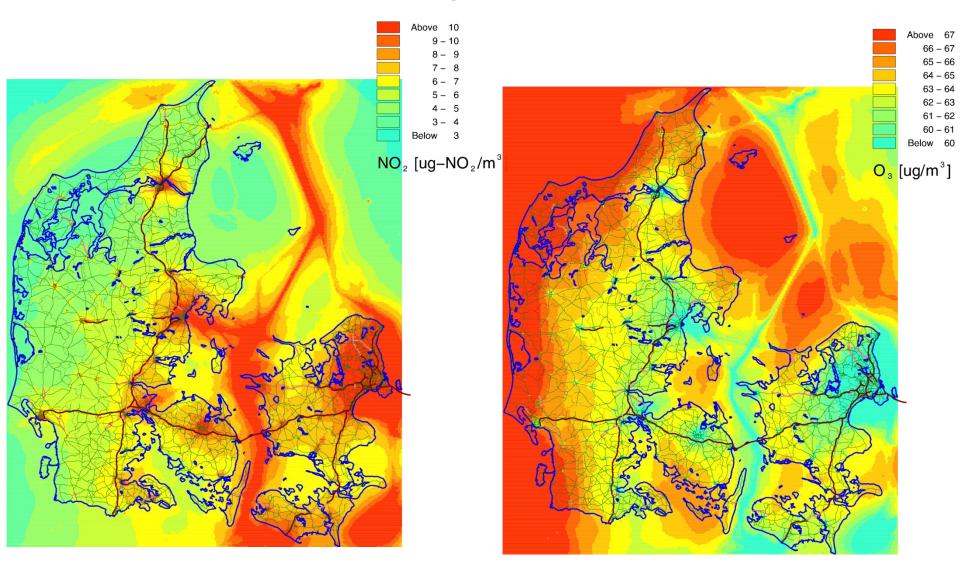
SO₄2-

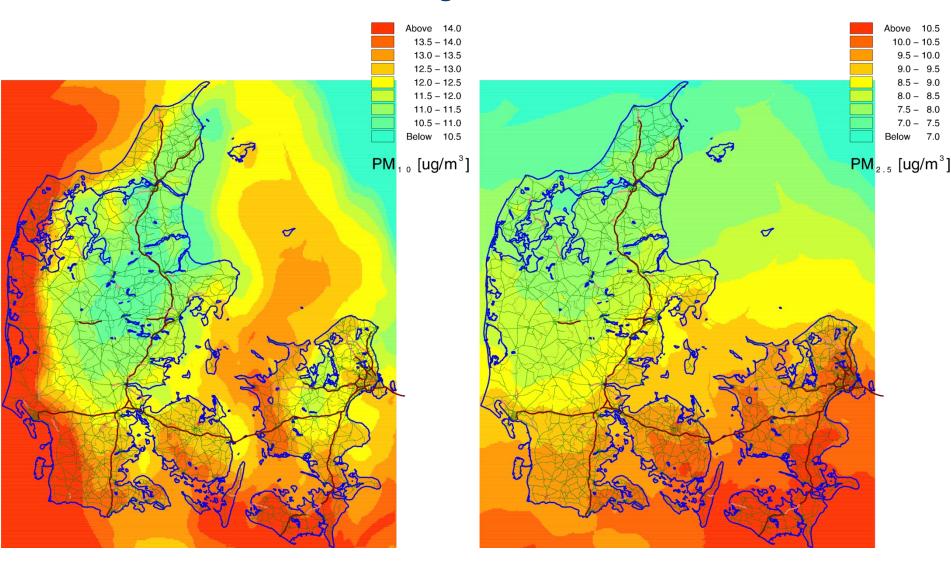
SO₄ Wet Dep.

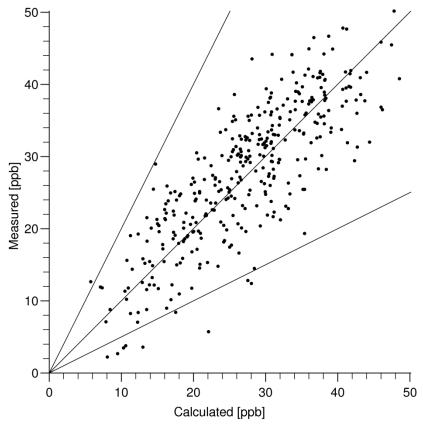



- Gaussian multiple plume model (horizontal) and linear dispersion to H_{mix} (vertical)
- > Input data:
 - Meteorological forecast from the Eta/MM5 model
 - Regional air pollution forecast from DEHM
 - Emissions of e.g. NO_x , CO and PM, etc.
- > Output: Hourly values of O₃, NO, NO₂, NO_x, CO and PM
- > Resolution 1 km x 1 km




Emissions from SPREAD

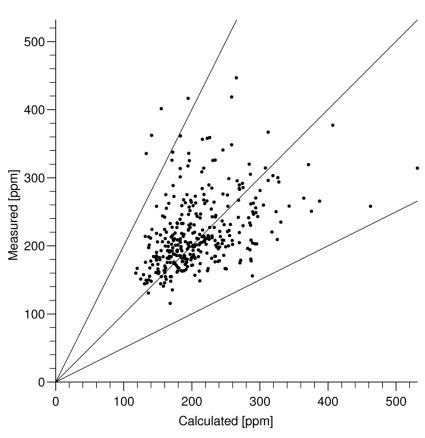


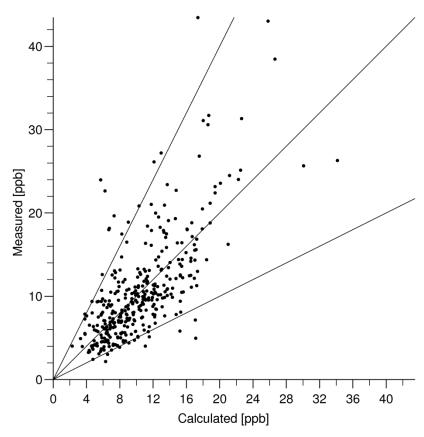


NO₂, DAILY MEAN VALUES

20 15 Measured [ppb] 5 5 10 15 20 Calculated [ppb]

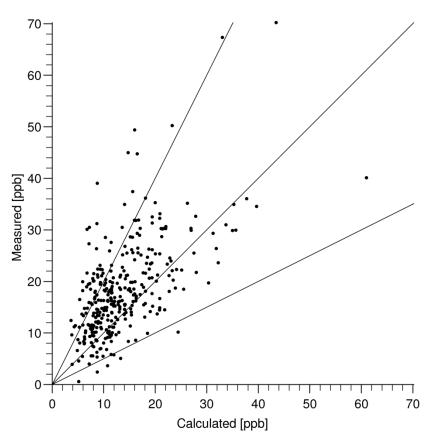
N = 358, means: calculated = 9.11, measured = 8.68 Standard deviations: calculated = 3.51, measured = 4.24 correlation = 0.75, test (H: corr=0) = 21.26, FM = 78.05% bias = 0.427, $ci_{bias}(95\%) = +/-0.294$, FB = 0.048, FSD = -0.373 NMSE = 0.104, $ci_{NMSE}(95\%) = +/-0.000$

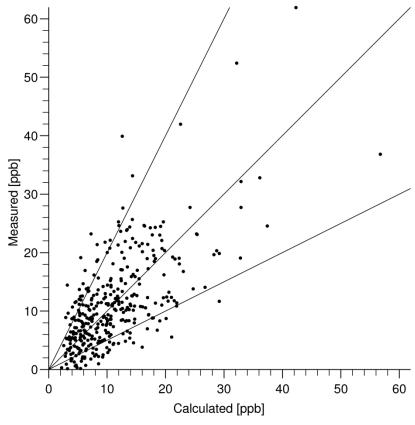

O₃, DAILY MEAN VALUES


N = 358, means: calculated = 27.23, measured = 27.82 Standard deviations: calculated = 8.94, measured = 9.61 correlation = 0.82, test (H: corr=0) = 27.13, FM = 84.85% bias = -0.584, ci_{bias}(95%) = +/- 0.580, FB = -0.021, FSD = -0.144 NMSE = 0.042, ci_{NMSE}(95%) = +/- 0.000

CO, DAILY MEAN VALUES

NOx, DAILY MEAN VALUES


N = 348, means: calculated = 209.86, measured = 219.74 Standard deviations: calculated = 55.98, measured = 54.08 correlation = 0.42, test (H: corr=0) = 8.51, FM = 81.69% bias = -9.880, $ci_{blas}(95\%)$ = +/- 6.260, FB = -0.046, FSD = 0.069 NMSE = 0.079, $ci_{NMSE}(95\%)$ = +/- 0.000

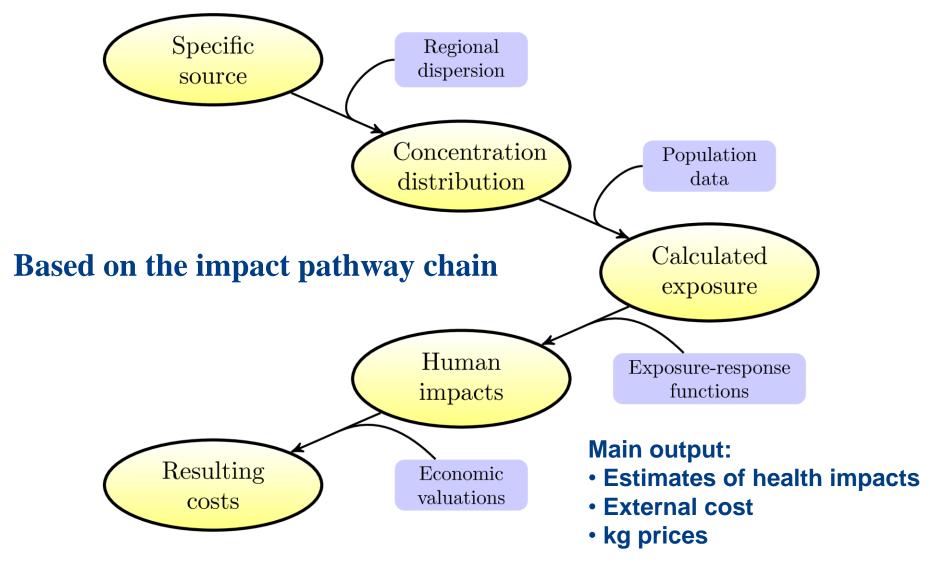

N = 358, means: calculated = 10.41, measured = 10.61 Standard deviations: calculated = 4.48, measured = 6.25 correlation = 0.71, test (H: corr=0) = 19.10, FM = 74.87% bias = -0.201, ci_{bias}(95%) = +/- 0.456, FB = -0.019, FSD = -0.642 NMSE = 0.175, ci_{NMSE}(95%) = +/- 0.000

PM10, DAILY MEAN VALUES

PM25, DAILY MEAN VALUES

N = 333, means: calculated = 13.62, measured = 18.24 Standard deviations: calculated = 7.12, measured = 9.06 correlation = 0.61, test (H: corr=0) = 14.18, FM = 66.60% bias = -4.620, ci_{bias}(95%) = +/- 0.787, FB = -0.290, FSD = -0.472 NMSE = 0.301, ci_{NMSE}(95%) = +/- 0.000

N = 360, means: calculated = 11.07, measured = 11.25 Standard deviations: calculated = 6.94, measured = 7.90 correlation = 0.67, test (H: corr=0) = 17.14, FM = 66.18% bias = -0.186, $ci_{blas}(95\%)$ = +/- 0.629, FB = -0.017, FSD = -0.258 NMSE = 0.297, $ci_{NMSE}(95\%)$ = +/- 0.000


The integrated model system

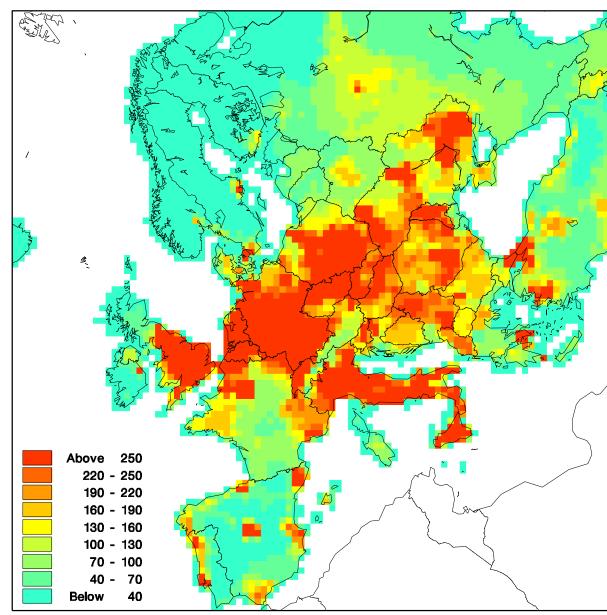
EVA

Economic Valuation of Air pollution

The EVA system – Economic Valuation of Air pollution

Health effects (species)	Exposure-response coefficient	Valuation, Euros		
Morbidity				
Chronic Bronchitis (PM)	8.2E-5 cases/μgm ⁻³ (adults)	52,962 per case		
Restricted activity days (PM)	8.4E-4 days/ μgm ⁻³ (adults)	131 per day		
Congestive heart failure (PM)	3.09E-5 cases/ μgm ⁻³	16,409 per case		
Congestive heart failure (CO)	5.64E-7 cases/ μgm ⁻³			
Lung cancer (PM)	1.26E-5 cases/ μgm ⁻³	21,152 per case		
	Hospital admissions			
Respiratory (PM)	3.46E-6 cases/ μgm ⁻³	7.021 non esse		
Respiratory (SO ₂)	2.04E-6 cases/ μgm ⁻³	7,931 per case		
Cerebrovascular (PM)	8.42E-6 cases/ μgm ⁻³	10,047 per case		
Asthma children (7.6 % < 16 years)				
Bronchodilator use (PM)	1.29E-1 cases/ μgm ⁻³	23 per case		
Cough (PM)	4.46E-1 days/ μgm ⁻³	59 per day		
Lower respiratory symptoms (PM)	1.72E-1 days/ μgm ⁻³	16 per day		
Asthma adults (5.9 % > 15 years)				
Bronchodilator use (PM)	2.72E-1 cases/ μgm ⁻³	23 per case		
Cough (PM)	2.8E-1 days/ μgm ⁻³	59 per day		
Lower respiratory symptoms (PM)	1.01E-1 days/ μgm ⁻³	16 per day		
Mortality				
Acute mortality (SO ₂)	7.85E-6 cases/ μgm ⁻³	2,111,888 per case		
Acute mortality (O ₃)	3.27E-6*SOMO35 cases/ μgm ⁻³			
Chronic mortality (PM)	1.138E-3 YOLL/ μgm ⁻³ (>30 years)	77,199 per YOLL		
Infant mortality (PM)	6.68E-6 cases/ μgm ⁻³ (> 9 months)	3,167,832 per case		

Total number of cases of premature deaths in Europe


Calculated using EVA for the year 2000 for the total air pollution levels

A total of 680000 cases decreasing to 450000 in the year 2020

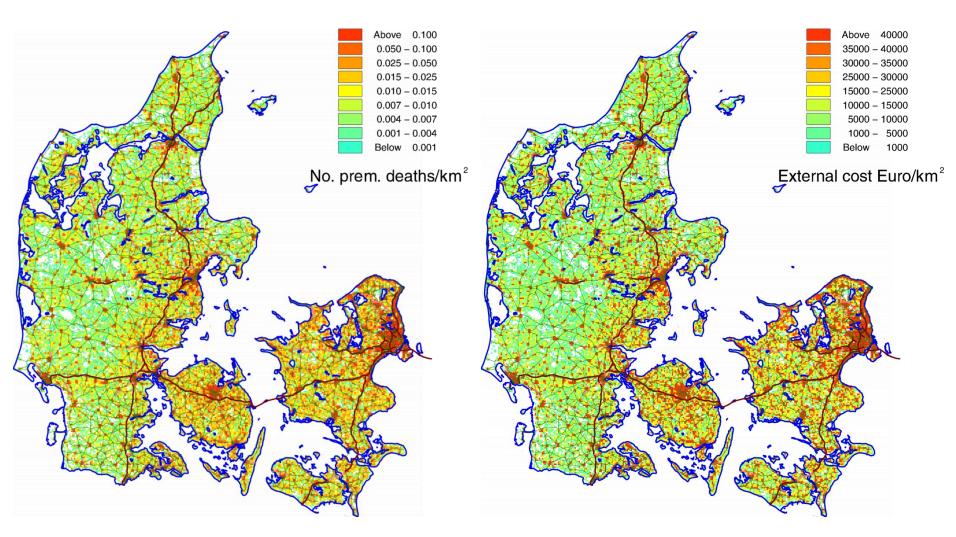
IIASA estimates 310000 cases of premature deaths in year 2000 (EU25).

For Denmark:

Year 2000: 4000, Year 2011: 3300 Year 2020: 2200

Contributions in % from European emission sectors to the total cost related to health impacts in Europe and Denmark, year 2000

	Eur	оре	Den	mark
SNAP category	bn Euros	%	Mio Euros	%
SNAP 1 (Power plants)	185	24.1	698	18.6
SNAP 2 (Domestic heating - wood stoves)	73	9.5	362	9.7
SNAP 3 (Industrial combustion)	60	7.9	258	6.9
SNAP 4 (Production processes)	50	6.5	193	5.2
SNAP 5 (Fossil fuels extraction/distr.)	10	1.3	50	1.3
SNAP 6 (Solvents and other products use)	13	1.7	84	2.2
SNAP 7 (Road traffic)	138	18.0	857	22.9
SNAP 8 (Other mobile sources)	50	6.5	255	6.8
SNAP 9 (Waste treatment)	7.8	1.0	29	0.8
SNAP 10 (Agriculture)	180	23.5	957	25.6
Sum 1-10	766	100.0	3740	100.0



Contributions in % from Danish emission sectors to the total cost related to health impacts in Europe and Denmark

Emission year	2000		2008	
Region/SNAP	Europe	Denmark	Europe	Denmark
DK/1 (Power plants)	10.3	5.7	8.5	4.4 (3.4)
DK/2 (Domestic heating - wood stoves)	9.3	16.3	17.6	29.9 (39.1)
DK/3 (Industrial combustion)	5.3	4.3	6.7	4.3 (3.6)
DK/4 (Production processes)	1.9	3.1	1.8	2.4 (1.9)
DK/5 (Fossil fuels extraction/distr.)	1.7	2.3	1.4	1.8 (1.4)
DK/6 (Solvents and other products use)	2.6	2.5	2.0	2.0 (1.5)
DK/7 (Road traffic)	17.6	19.3	17.4	16.3 (17.7)
DK/8 (Other mobile sources)	7.9	7.2	7.9	5.4 (5.6)
DK/9 (Waste treatment)	0.6	0.1	0.5	0.4 (0.3)
DK/10 (Agriculture)	42.8	39.4	36.2	33.2 (25.5)
DK/sum 1-10	100.0	100.0	100.0	100.0 (100.0)

No. of premature deaths/km² and related external cost/km²

Total number of cases in Denmark

Health impact	Number of cases in Denmark
Year	2012
Chronic Bronchitis	3355
Restricted Activity Days	3430338
Respiratory Hospital Admissions	173
Cerebrovascular Hospital Admissions	422
Congestive Heart Failure	306
Lung Cancer	514
Bronchodilator Use Children	90090
Bronchodilator Use Adults	656636
Cough Children	311264
Cough Adults	675950
Lower Respiratory Symptoms Children	120120
Lower Respiratory Symptoms Adults	243824
Acute YOLL	98
Chronic YOLL	35745
No. of premature deaths	3470
Infant mortality	4

Source allocation for PM_{2.5} in Denmark and Copenhagen - contribution to the health related external costs

	Rural background (DK)	Urban background (Cph)	Street Level (Cph)
International ship traffic (2)	18%	15%	13%
Europe (10)	57%	48%	40%
Denmark (10)	25%	21%	17%
Neighbouring municipalities (1)		3,4%	2,8%
Urban background (16)		12%	10%
Street (5)			18%
Sum	100%	100%	100%

⁼ a total of 44 different source allocations at street level

Overall conclusions

- Air pollution constitutes a serious problem to human health and the related external costs are considerable.
- Air pollution can only be understood by coupling of models at all scales taking into account local, regional and remote sources.
- Air pollution can only be understood by integrating information from models and measurements.
- The integrated THOR and EVA systems has been developed for understanding air pollution levels, and source allocations as a basis for policy making with respect to both air pollution levels, exposure and impacts.

Current research questions

- In order to regulate air pollution optimally, the vital questions are:
 - How to obtain mass-closure in the models including all kind of particles?
 - Which kind of air pollution/atmospheric particles causes the health effects?
 - > Are there some chemical components of particles that are more harmful than others (e.g. BC vs. NH₄NO₃ vs. sea salt)
 - Is it the chemical species attached to the surface of the particles that are harmful (e.g. metals, PAHs, dioxines, POPs in general)?
 - > Is it really the ultrafine particles that causes health effects or is it total PM_{2.5}?
 - Can we assign different air pollutants to short term and long term health effects?

Thanks for your attention!

Contact: Jørgen Brandt jbr@envs.au.dk

Atmos. Chem. Phys., 13, 7725-7746, 2013 www.atmos-chem-phys.net/13/7725/2013/ doi:10.5194/acp-13-7725-2013 © Author(s) 2013. CC Attribution 3.0 License.

Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system – an integrated modelling approach

J. Brandt¹, J. D. Silver¹, J. H. Christensen¹, M. S. Andersen¹, J. H. Bonlokke², T. Sigs A. B. Hansen¹, K. M. Hansen¹, G. B. Hedegaard^{1, *}, E. Kaas³, and L. M. Frohn⁴

Correspondence to: J. Brandt (jbr@dmu.dk)

Atmos. Chem. Phys., 13, 7747–7764, 2013 www.atmos-chem-phys.net/13/7747/2013/ doi:10.5194/acp-13-7747-2013 © Author(s) 2013. CC Attribution 3.0 License.

Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system

European results

published in two

papers in ACP 2013

J. Brandt¹, J. D. Silver¹, J. H. Christensen¹, M. S. Andersen¹, J. H. Bonlokke², T. Sigsgaard², C. Geels¹, A. Gross¹, A. B. Hansen¹, K. M. Hansen¹, G. B. Hedegaard^{1,*}, E. Kaas³, and L. M. Frohn⁴

Correspondence to: J. Brandt (jbr@dmu.dk)

¹ Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Ro
² Aarhus University, Section of Environment, Occupation, and Health, Institute of Public Health, 1260, 8000 Aarhus C. Denmark

³University of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Versions of Copenhagen, Planet and Copen

⁴Azrhus University, AU Knowledge, Tuborgvej 164, 2400 Kobenhavn NV, Denmark *now at: Centre for Environmental and Climate Research, Lund University, Sölvegatan 37.

¹ Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark

²Aarhus University, Section of Environmental and Occupational Health, Institute of Public Health, Bartholins Alle 2, Building 1260, 8000 Aarhus C, Denmark

³University of Copenhagen, Planet and Geophysics, Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark ⁴Aarhus University, AU Knowledge, Tuborgyej 164, 2400 Copenhagen, Denmark

[&]quot;now at: Centre for Environmental and Climate Research, Lund university, Sölvegatan 37, 223 62 Lund, Sweden