25th Workshop Troposheric Chemical and Transport Modelling 6-7 November 2014 - University of Aveiro

INVESTIGATING AEROSOL - RADIATION - CLOUD FEEDBACKS UNDER EMISSION CONTROL STRATEGIES

A. Balzarini, G. Pirovano, G. M. Riva and A. Toppetti

AIM OF THE WORK

- Models are important tools to explore the effects of emission-control strategies on air quality
- In recent years the modelling community in moving toward the so-called coupled on-line approach
- The existence of interactions between aerosols and meteorology ("feedbacks") has been well documented in past years, but only few studies considered them in air quality simulations
- Moreover, the impact of feedback effects on emission-reduction strategies needs to be addressed

Investigating interactions between aerosol and meteorology through the WRF-Chem coupled model in order to understand the implication of feedback mechanisms on ground concentrations either when emission control strategies are applied

MODEL SET UP

- WRF-Chem version 3.4.1 (September 2012)
- <u>Period:</u> July 2010
- <u>Computational domain:</u>

 1) Italy – 1290x1470 km², 15 km grid step, 86x98 cells, 30 vertical levels (50 hPa)

- <u>Meteorology IC & BC:</u>
 ECMWF meteorological fields (0.5 deg, 6 hours)
- <u>Chemistry IC & BC:</u> MACC-II project (1.125 deg, 3 hours)
- Emissions:
 1) ANTHROPOGENIC: SMOKEv2.6 (ISPRA + EMEP)
 2) ON-LINE NATURAL: sea salt (Gong et al., GBC, 2003) MEGANv2.4 (Guenther et al., ACP, 2006) DUST (Shaw et al., AE, 2008)

BASE: without feedback effects

FBS: with feedback effects

MODELING CONFIGURATIONS

CHEMISTRY OPTIONS	BASE	FBS
GAS CHEMISTRY	CBMZ	CBMZ
AEROSOL CHEMISTRY	MOSAIC	MOSAIC
Aqueous reactions	-	Fahey and Pandis
Dry and wet deposition	Included	Included
Aerosol dynamic	4 bins – sectional approach	4 bins – sectional approach
Radiation feedack	off	on
Indirect feedback	off	on

PHYSICS OPTIONS					
Microphysics	MORRISON 2-mom				
PBL	YSU				
LSM	Noah				
Cumulus scheme	New Grell 3D scheme				
Shortwave radiation	RRTMG				
Longwave radiation	RRTMG				

Ricerca sul Sistema Energetico - RSE S.p.A.

0,05

0,04

0.03

0,02

0,01

0,00

-0,01

-0,02

-0,03

-0,04

-0,05

30,01

22,5

15.0

7,5

0,0

-7,5

-15,0

-22,5

-30.0

Ε

kg/m2

57

49

61

73

85

 PM2.5 concentration vertical profiles on 25/06/2010 at 01 UTC in the city of Milan

COMPARISON TO OBSERVATIONS

a) Monthly performances at 72 WMO stations

Variables	Moon	BASE					FBS				
	Obs	Mean Mod	NMB %	NME %	RMSE	AC	Mean Mod	NMB %	NME %	RMSE	AC
Temperature (K)	298.68	296.80	-0.63	0.97	3.63	0.75	296.86	- 0.61	0.96	3.58	0.76
Mixing ratio (g/kg)	14.38	13.32	-7.36	17.21	3.19	0.62	13.36	-7.13	17.21	3.18	0.63
Wind speed (m/s)	3.45	3.54	2.76	46.93	2.15	0.46	3.52	2.24	46.71	2.15	0.46

b) Monthly performances at 134 Rural Background stations

Compound	Mean		BASE				FBS				
	Obs	Mean Mod	NMB %	NME %	RMSE	ΙΟΑ	Mean Mod	NMB %	NME %	RMSE	ΙΟΑ
NO ₂ (ppb)	4.95	2.40	-51.57	55.71	4.00	0.51	2.46	-50.25	54.66	3.95	0.52
O ₃ (ppb)	44.13	42.55	- 3.5 6	18.92	10.66	0.48	42.52	-3.64	18.97	10.69	0.47
SO ₂ (ppb)	0.78	0.35	-54.36	70.49	0.76	0.59	0.34	-56.25	71.82	0.77	0.63
PM10 (μg/m³)	20.62	11.84	-42.57	45.48	12.19	0.72	12.99	-37.01	42.12	11.51	0.79
PM2.5 (μg/m³)	14.06	10.72	-23.74	35.30	6.58	0.41	12.64	-10.09	33.28	6.23	0.41

FIRST SCENARIO ANALYSIS - 2030

• Scenario analysis of emission reduction based on GAINS Italy outcomes (ENEA, 2013):

- Energy scenario developed by ISPRA using MARKAL (MARKet ALlocation; http://www.iea-etsap.org/)
- Other-sectors scenario developed by ENEA
- Control strategy that follows National and European legislations (e.g. LCPD 2001/80/CE; Dir. 692/2008/CE; Dir. 595/2009/CE; Dir. 2004/42/CE)

	NOx	voc	NH ₃	SO ₂	PM10	PM2.5
EMISSIONS - BASE CASE 2010	2.9E+06	2.0E+06	8.8E+05	1.6E+06	6.1E+05	4.5E+05
EMISSIONS - SCENARIO 2030	2.3E+06	1.9E+06	8.9E+05	1.6E+06	5.8E+05	4.4E+05
VARIATION WITH RESPECT TO THE BASE CASE (%)	-19%	-9%	1%	1%	-5%	-3%

Unit: ton/domain/year Region: Italy+EMEP

SCENARIO: without feedback effects

SCENARIO_FBS: with feedback effects

D'Elia and Peschi, LO SCENARIO EMISSIVO NAZIONALE NELLA NEGOZIAZIONE INTERNAZIONALE, ENEA Report, 2013

Differences with respect to the Base case SCENARIO - BASE

without Feedbacks

Differences with respect to the Feedback case SCENARIO_FBS - FBS

with Feedbacks

CONCLUDING REMARKS

- The coupled approach tends to improve the skill of model in reconstructing both meteorological fields and aerosol concentrations especially in complex circulation systems
- Direct feedbacks are found to have the following effects in the Po valley:
 - 1) Incoming solar radiation decreases at the ground up to 20 W/m² (5%)
 - 2) Planetary Boundary Layer height reduces up to 5% (30 m)
- Indirect feedbacks reduce cloud droplet number concentrations up to 40% and increase rain droplet number concentrations
- Feedbacks have minor influence on gas species (2-4%), in line with meteorological variations, while a strong impact was shown for aerosols (PM2.5) and their main components, that increases of about 30% due to the induced reductions of turbulent vertical mixing that concentrated particles in the first atmospheric layer
- It was demonstrated the effectiveness of using WRF-Chem to analyze future scenarios that explore the impact of emission control strategies on air pollution either when feedbacks are turned on
- Feedbacks effects are found to further improve the effectiveness of emission control strategies over the main polluted areas of Italy

THANKS FOR YOUR ATTENTION!

alessandra.balzarini@rse-web.it

FEEDBACK EFFECTS

- <u>Direct effect:</u> scattering (sulfate, OC) and absorption (BC) of shortwave incoming radiation depending on aerosol type and size
- <u>Semi-direct effect</u>: aerosol shortwave absorption (BC) reduced cloud cover by reducing relative humidity into the atmospheric layer
- First indirect effect: increase cloud droplet number concentrations with lower mean droplet size, that affect cloud cover and then cloud albedo
- <u>Second indirect effect:</u> influence on effective radius and hence cloud lifetime and initiation of precipitation

COMPARISON TO OBSERVATIONS

• Daily Box-whisker plots at rural background stations of the Po Valley

PM10 – AirBase daily mean for 20100701 20100731

Site: RB stations (< 1000 m) (15 sites) AirBase daily mean a25= 8.4 med= 12.9 a75= 19.1 a95= 28.6 PM25 (ug/m3) FBS q25= 7.1 med= 10.9 q75= 15.3 q95= 22.5 BASE **FEEDBACKS** BASE Observed

COMPARISON TO OBSERVATIONS

Time series of daily data at EMEP station of Ispra (IT0004R)

VERTICAL PROFILES

