

Radiative effects of atmospheric aerosols over Europe: an on-line modelling approach

Laura Palacios, Rocío Baró, <u>P. Jiménez-Guerrero</u>

Regional Atmospheric Modelling (RAM), Physics of the Earth E-mail: pedro.jimenezguerrero@um.es Phone: +34 868 88 8175

UNIVERSIDAD DE MURCIA

25th Workshop Tropospheric Chemical Transport Modelling GLOREAM 2014, Aveiro (Portugal)

Aerosol radiative effects

AQMEII: Air Quality Model Evaluation International Initiative Initiated by JRC Ispra, US-EPA, and Environment Canada http://aqmeii.jrc.ec.europa.eu/

First phase: 2010-2011; Atmospheric Environment 53 (2012)

Second phase with focus on **online coupled models** European Domain: 20 Participants (1 with offline model) Cost action ES1004 EuMetChem

Modelling results presented here validated in Brunner et al. (2014, accepted) for meteorology, Im et al. (2014a, 2014b) for ozone and particulate matter, or Forkel et al. (2014) and Baró et al. (2014) for radiative effects.

7 contributions with WRF-Chem simulations for Europe

AQMEII2 & WRF-Chem

Contributions with WRF-Chem

- 1) Univ. L'Aquila, CETEMPS (Gabriele Curci, Paolo Tucella)
- 2) RSE (Guido Pirovano, Alessandra Balzarini)
- 3) Univ Murcia, MAR-UMU (Pedro Jiménez-Guerrero, Rocío Baró)
- 4) KIT, IMK-IFU (Renate Forkel, Johannes Werhahn)
- 5) Univ. Pol. Madrid, ESMG (Roberto San José, Juan L. Pérez)
- 6) Univ. Ljubliana SPACE-SI (Rahela Žabkar, Luka Honzak)
- 7) ZAMG (Marcus Hirtl)

Spontaneous movement intended to minimize efforts of groups running WRF-Chem over Europe with contributions to pre- and post-processing and code additions from everyone

AQMEII2 WRF-Chem chemical/ microphys. options

						7		
	Ljubljana	Ljubljana	KIT	ZAMG	Murcia	ĽAquila	RSE	Madrid
Version	3.4.1	3.4.1	3.4.1	3.4.1	3.4.1	3.5	3.4.1	3.4.1
Microphys.	Morrison	Morrison	Morrison	Morrison	Lin	Morrison	Morrison	Morrison
Gas chem.	RADM2	RADM2	RADM2 Integ1mod	RADM2	RADM2	RACM	CBMZ	CBMZ
Inorg. aerosol	MADE	MADE	MADE	MADE	MADE	MADE	MOSAIC 4 bins	MOSAIC 4 bins
Org. aero	SORGAM	SORGAM	SORGAM	SORGAM	SORGAM	VBS	-	-
GS wet.dep	Simple	Simple	Easter04	Easter04	Easter04	Easter04	Simple	Easter04
Conv. w.dep	yes	yes	yes	yes	yes	yes	yes	yes
GS aq. chem	-	-	WT86	FP01	FP01	WT86	-	FP01
Conv. aq.ch	WT86	WT86	WT86	WT86	WT86	WT86	-	-
Aero dir eff	No	Yes	Yes	Yes	Yes	Yes	No	Yes
GS aero indir effect	No	No	Yes	Yes	Yes	Yes	No	Yes
Other								No dust

General setup

WRF/Chem version 3.4.1 with common modifications (one simulation with 3.5)

- Lambert projection (50N, 12E)
- 270 x 225 cells, dx = 23 km
- 33 eta levels

AQMEII recommendations:

1-day meteo-only spin-up +
 2-days simulations with chemistry

 Chemistry restarted from previous run

 Long enough to allow feedback ↔

 short enough for suppressing semi-direct effects?

Magnitude of feedback effects

Precipitation over MED Summer 2010 (JAS) (Only at AQ stations!)

> Increase of precipitation due to indirect effect is quite uncommon but possible.

E = centered RMS difference

Magnitude of feedback effects

Case studies: Russian fires and Saharan dust COST action ES1004 coordinated study

Case studies: Russian fires and Saharan dust COST action ES1004 coordinated study

	Ljubljana	Ljubljana	KIT	ZAMG	Murcia	L'Aquila	RSE	Madrid
Version	3.4.1	3.4.1	3.4.1	3.4.1	3.4.1	3.5	3.4.1	3.4.1
Microphys.	Morrison	Morrison	Morrison	Morrison	Lin	Morrison	Morrison	Morrison
Gas chem.	RADM2	RADM2	RADM2 Integ1mod	RADM2	RADM2	RACM	CBMZ	CBMZ
Inorg. aerosol	MADE	MADE	MADE	MADE	MADE	MADE	MOSAIC 4 bins	MOSAIC 4 bins
Org. aero	SORGAM	SORGAM	SORGAM	SORGAM	SORGAM	VBS	-	-
GS wet.dep	Simple	Simple	Easter04	Easter04	Easter04	Easter04	Simple	Easter04
Conv. w.dep	yes	yes	yes	yes	yes	yes	yes	yes
GS aq. chem	-	-	WT86	FP01	FP01	WT86	-	FP01
Conv. aq.ch	WT86	WT86	WT86	WT86	WT86	WT86	-	-
Aero dir eff	No	Yes	Yes	Yes	Yes	Yes	No	Yes
GS aero indir effect	No	No	Yes	Yes	Yes	Yes	No	Yes
Other								No dust

Downward SW radiation at the surface: Case studies

Data Min = -17.97, Max = 89.58

UNIVERSIDAD DE MURCIA

Base (no radiative effects)

Diff. base - (dir + indir)

Data Min = -12.63, Max = 19.49

Downward SW radiation at the surface: Case studies

UNIVERSIDAD DE MURCIA

Base (no radiative effects)

2-m temperature: Case studies

UNIVERSIDAD DE MURCIA

Base (no radiative effects)

PBL Height: Case studies

Data Min = -91.19, Max = 272.93

UNIVERSIDAD DE MURCIA

Data Min = -34.03, Max = 97.96

Base (no radiative effects)

RAINC: Case studies

Base (no radiative effects)

RAINC: Case studies

Base (no radiative effects)

RAINNC: Case studies

10.00

Base (no radiative effects)

Tropospheric Ozone: Case studies

UNIVERSIDAD DE MURCIA

Base (no radiative effects)

Tropospheric Ozone: Case studies

-1.20

-0.40

Data Min = -2.60. Max = 4.13

0.40

1.20

UNIVERSIDAD DE MURCIA

Base (no radiative effects)

-1.20

-0.40

Data Min = -1.45, Max = 1.35

0.40

1.20

PM2.5: Case studies

Base (no radiative effects)

Conclusions

- Joint effort for AQMEII2 with common grid and input permits analysis of feedback effects on meteorology
- For the applied horizontal resolution, the impact of aerosol feedbacks on pollutant distributions was frequently smaller than the effect of the choice of the chemistry mechanism and aerosol module, and microphysics scheme.
- No 'best' setup
- Differences depend on the parameters of the 'base case' (e.g. CCN) and considered region (here, inclusion of indirect effect can reduce/enhance precipitation)
- Pollutants variations come from change in wind direction, speed, atmospheric stability and/or surface temperatures resulting from the feedbacks – these changes modify the height to which the plume of emitted species may rise, the direction and speed of downwind dispersal, and the production rate of secondary pollutants.
- Cases could have been even more...

Acknowledgments:

All groups for their contributions to code, pre- and post-processing
AQMEII-Phase 2 and Cost Action ES1004 EuMetChem
This work was funded by projects CGL2010-22158-C02-02 and CGL2013-48491-R (also funded by the FEDER programme of the European Union. Dr. Pedro Jiménez-Guerrero acknowledges the Ramón y Cajal Programme of the Spanish Ministry of Economy.

Thank you for your attention